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Among the various problems of celeetlal mechanics related to the n-body prob- 
lem, a certain amount of Interest attaches to the specific situation wherein 
a passive gravltatlonal point mass N mqves under the assumption that the 
relative disposition of the other active gravitational masses experiences no 
large changes. 

If the attracting masses are regarded as points and If changes In the 
relative dlspoeltlon of the attracting bodies are neglected, one arrives at 
the problem of the motion of the point N In a field 
attracting centers (the point N here represents the 'i 

reduced by n-stationary 

. n+l)-th body). 

In addition to the problem of central motion (n - 1), soluble dynamics 
problems of this category Include Euler's case [l] of two (n = 2) stationary 
Newtonian attracting centers. 

This problem, which for a long time was of solely theoretical Interest as 
an example of an Integrable Llouvllle system [2], has recently been attract- 
lng attention In connection with the mechanics of artificial satellites, par- 
ticularly after It was shown that the potential of an oblate spheroid can be 
approximated by the potential of two specifically chosen stationary Newtonian 
attracting centers [3 and 43. 

The solution of the problem for n-attracting centers for n 5 3 Is 
unknown, except for a single special case of three centers pointed out by 
Lagrange and considered In greater detail by J.A. Serre [5]. 

We shall concern ourselves here with problems on the existence of periodic 
trajectories In the case of n-attracting centers. An arbitz%uy and not neces- 
sarily Newtonian gravitational law will be assumed. 

Our analysis Is based on the theory of quasllndlces of singular force 
field points as set forth In Lb]. 

1. Let the point N(x, I/) of unit mass (m = 1) situated In a field of 
n-attracting centers of masses m, move along some closed orbit (C) with 
some constant energy h . 

Assuming that the attraction forces are Inversely proportional to the 
(k + l)-th power of the distance, 
to unity (through an 

while the gravitational constant Is equal 
choice of the units of measurement), we 

write out the potential of the field under consideration, 

(1.1) 

Introducing Into our discussion the function @(z,?J)= In 7/2(h -V(z, Y)), 
which, by virtue of the energy Integral, Is equal to the natural logarithm 
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of the velocity u of the point, and making use of the notion of the quasi- 
index Jt of the singular point 0 of the potential Y(x, I/), we write the 
basic relation for periodic trajectories cb] 

1 ’ 
1-J= ---z 

ss 
AWxdy (J=J1-j....+J,) 

(0) 
(1.2) 

Here J is the sum of quasllndices 9 (1 s s i n) of singular points O3 
s) lying within the orbit (I?) , (o) is the area bounded by 

is a Laplacfan. 

Making use of the notions of the density 6(x, I/) and weight P of func- 
tion @4x, I/) , 

P = SC 8 (x, y) dxdy 
1 

(4 
(6 = E A(D) 

and noting that the quasllndex J for the singular 
potential V(W, g) (1.1) is Jo- i/2 , by virtue of P 

olnt 
1.2) 

h-s 
P=2-1 (1 -<S </if 

2, The sufficient condition for the absence of periodic trajectories can 
be formulated either In differential form, in terms of the densltles 6(x, u), 
or ln integral form In terms of the weights P of the function (P(x, U) . 
As regards the necessary conditions for the existence of periodic trajecto- 
ries, these will be formulated only in integral form in the weight terms of 
the function U~fx, g). 

The following theorems are valid. 

Theorem 1. Let the region (a) under consideration contain s 
(1 i s s n) of the total number n of attracting centers, and let the force 
of attraction exerted by each center be inversely proportional to the (k+l)-th 
power of the distance. Further, let one of the conditions 

a) kg>% b) ,%s= 2, c) ks<3 (2.l) 

be fulfilled in the region ((I) . 

The sufficient condition for the absence of periodic trajectories in the 
region (a) Is then the stipulation that the sign of the density a(r, Y) of 
the function C&C, I/) remain constant In accordance with (2.1), i.e. that 

a) 6 (2, Y) e 0, b) 6 (~1 Y) > 0 (6 < % c) 6 (2, Y) >o (2.2) 

Theorem 2. Let one of the conditions (2.1) of Theorem 1 be ful- 
filled. The sufficient condition for the absence of periodic trajectories 
In the region (u) is then one of the following set of rules as regards the 
sign of the weight P of the function a(~, u) : 

a) P f 0, b) P>OP<O), c) P>O (2.3) 

Theorem 3. Let one of the conditions (2.1) of Theorem 1 be ful- 
filled. The necessary condition for the existence of periodic trajectories 
In the region (u) Is then one of the following set of rules as regards the 
sign of the weight P of the function @(r, I/) : 

a) P > 0, b) P = 0, cl P<O (2.4) 

By virtue of (1. 
basic relation (1.4 

), the proof of these theorems follows directly from 
. 

It should be noted that the sufficient conditions for the lack of periodic 
trajectories (2.2) are more rigid than analogous conditions (2.3), since the 
former require that the sign of the density 6(x, v) be constant at all 
points (with the exception of the singular points 01) of the region (u) , 
which Is generally not required for the fulfllment of conditions (2.3). 

In the case of Newtonian attracting centers, It Is to be understood that 
k = 1 in all the above formulas. 
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Direct computation of the density 6(x, I/) = &T&(X, y) of the func- 
tioz* Q1 (z, y) = In fZ (h - V (r, y)) yields 

b (f fJ) = _ _G -V) AV + (t’: -+- V;J 
Tn (/i L-q7 (3.1) 

where the potential 
ting the intervening 

V(x, I/) Is deterr,llned in accordance with (1.1). Omlt- 
computations, we write out the values of the quantities 

involved n 

Al. I:= -I;‘,: _& 
j,l 3 

I 

Fig. 1 

is the distance between the two attracting centers 0, and 0, (Flg.1). 

The final expression of the density 6(x, I/) is of the form 

where 

(3.2) 

(3.3) 

and where an asterisk means that summation Is carried out for t # j . Hence, 
the slgn of the density 6 depends intimately on the energy constant h , 
since sign (iI) = stgn (hA + Y) 

Setting all m except one equal to zero, we 
lng &enter (n - 1) - Let mf- m # 0 . Then 

v==+, A=-&, 

and the density 

S= 
mk%r k 7 

4n (m + hrk)’ 

(4 F> 0) (3.6) 

obtain the case of one attract- 

Y=cJ 

(3.7) 

Here sign (6) - sigh (h) , which coincides with an earlier result [6]. 

-We of the terminology adopted In the case of the two-body problem, 
we distinguieh between three types of motion, the criterion being the value 
of the energy constant & : hyperbolic motion (h > 0) parabolic motion 
(h = 0) , and elliptical motion (h < 0) . Thus, by (3.6), the density 6 
for the hyperbolic and parabolic types of motion has a positive sign. By 
Theorem 1, this Is in turn the sufficient condition for the absence of peri- 
odic trajectories for k8 5 2 . 

In the case of elliptical motion (h < 0) the density 6(x, k) varies in 
sign. The sign of 6(x, y) changes on passaie through the line describdd by 
Equation ruI(~,y) + Y(2,Y) = 0. 

4. Equation Y(x, Y) = h of the Hill curves which bound 
poselble motions of the point #(x, I/) by virtue of (1.1) is 

the region of 
of the form 

(rj = VCz-xj)* + (Y- Yj)‘) (4.1) 



On the problem of ?kstatlonary Centcrll 1309 

The Will curves enable us to draw some qualitative conclusions about the 
character of the motion. Thus, the density 6(x, p increases without limit 
in absolute value as it approaches the HI11 curves t 4.1). By virtue of(3.4) 
and (4.1), it assumes infinitely large values‘on the curves themselves. 

Let us consider the case of elliptical motion (h < 0) for lar absolute 
values of the energy constant h . The Hill curve equation (4.1 Implies 
here that one of the values must be very small, while the rest 
of the 

I 

F, (J # I,) have finltL';a?.uEa z&e the lnequalitie;en;~+~ 2 a,, 
J # t) are valid throughout the entire period of motion. or large 
hj Hili's curve consists of n (according to the number of attr~ctlng cen- 
ters) oval-shaped curves of very small linear dimensions, each of which 
includes an attracting center. Elliptical motion in the case of n attrac- 
ting bodies and large lhl involves the phenomenon of "capture", and the point 
ff moves within one of these ovals (the one in which It lay at the initial 
instant). 

The oval in which capture occurs can be approximately represented as a 
circle of small radius rf given by Expression 

where m, Is the mass of the attracting center O1 within the oval. The 
asterisk indicates that j # t in the summation. 

5. Let us consider the problem of the existence of periodic trajectories 
in the neighborhood of some attracting center, let us say OX , in the pre- 
sence of other attracting centers OJ (j = 2, 3, . . ., n) * 

Pig. 2 

m 
-- A (z* Y) - $+a (1 f r"+aF&, y)) 

+ FS (5, Y) 

where F,(x, Y) Fa(x, I/) and Fs(x, v) are entire functions of x and I/. 
Limiting ourselv:s to the leading terms in the indicated expansions, we 
obtain the following approximate value for the density: 

6 = nd2 (h + bl) ?-a 
4n(m+ hrkf2 (5.1) 

60 Zhat 
sign (6) = sign (h + b,) 

Hence, by virtue of Theorem 1 and depending on the values of the exponent 
k, to wit: (1) k’ 2, (2) k = 2 , and (3) k c 2 t the sufficient condl- 
tions for the absence of periodic trajectories in the neighborhood of the 
attracting center Or. is the fulfilment of one of the following conditions, 
respectively: 

1) h + b, f 0, 2) h + b,# 0, 3) h + bl,, 0 
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If the relations 

i) h + a,> 0, 2) h + b, = 0, 3) h + b, < 0 

are valid with the values of k Indicated above, then, by virtue of Theorem 
3, the necessary (but unsufflclent) conditions for the existence of periodic 
trajectories are fulfilled. 

The author is grateful to G.N. Duboshln for his attention to the present 
study. 
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