ON THE PROBLEM OF n~STATIONARY CENTERS

(K ZADACHE n-NEPODVIZHNYKH TSENTROV)
PMM Vol.30, M 6, 1966, pp. 1102-1106

I.M. BELEN'KII
(Moscow)

(Recelved April 23, 1966)

Among the various problems of celestlial mechanics related to the n-body prob-
lem, & certain amount of interest attaches to the specific situation wherein
a passive gravitational point mass ¥ mqves under the assumption that the
relative disposition of the other active gravitational masses experiences no
large changes.

If the attracting masses are regarded as points and if changes in the
relative disposition of the attracting bodles are neglected, one arrives at
the problem of the motion of the point ¥ 1in a field produced by n-stationary
attracting centers (the point y here represents the ?n+—1)-th body).

In addition to the problem of central motion (n = 1), soluble dynamics
problems of this category include Euler's case [1] of two (n = 2) stationary
Newtonian attracting centers.

This problem, which for a long time was of solely theoretical interest as
an example of an integrable Liouville system [2], has recently been attract-
ing attention in connection with the mechanic¢s of artificlal satellites, par-
ticularly after it was shown that the potential of an oblate spherold can be
approximated by the potential of two specifically chosen stationary Newtonian
attracting centers [3 and 4].

The solutlon of the problem for n-attracting centers for n = 3 1is
unknown, except for & single speclal case of three centers polnted out by
Lagrange and considered in greater detail by J.A. Serre [5].

We shall concern ourselves here with problems on the exlstence of periodic

trajectories in the case of n-attracting centers. An arbltrary and not neces~
sarily Newtonian gravitational law wlll be assumed.

Our analysis 1s based on the theory of quasiindices of singular force
fleld points as set forth in

1, Let the point M(x, y) of unit mass (m = 1) situated in a field of
n-attracting centers of masses m, move along some closed orbit (¢) with
some constant energy h .

Assuming that the attraction forces are inversely proportional to the
(k¥ + 1)-th power of the distance, while the gravitational constant is equal
to unity (through an appropriate choice of the units of measurement), we
write out the potential V(x, y) of the field under consideration,

Vi ) =— (rj= V&= + 1 — o) (L.1)
j=1

Introducing into our discussion the function @ (z, %) = In V2 (h —V (z, v))
which, by virtue of the energy integral, is equal to the natural logarithm
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of the velocity v of the point, and making use of the notlion of the quasi-
index J; of the singular point 0, of the potential V¥{x, y), we write the
basic relation for periodic trajec%ories (6]

1 ‘I
1 —J= “ESS ADdzdy (J=Jy 4. ..+ T (1.2)
(o)

Here .J is the sum of quasiindices s (1 < 8 s n) of singular points 0,
J=1, 2, ..., 8) lying within the orbit (¢) , (o) is the area bounded by
the orbit (¢) , and 2 1s a Laplactan.

Making use of the notions of the density &{x, y) and weight P of func-
tion o{x, y¥) ,

\ 1
P o SS § (z, y) dedy (86 = P AD) (1.3)
(o)
and noting that the quasiindex .7, for the singular point 0,{x,, ;) of the
potential ¥(x, y) (1.1) is J,= k/2 , by virtue of and (173Y we obtain
ks
=—2-—i (I <<s <) (1.4)

2. The sufficlent condition for the absence of periodic trajectories can
be formulated either in differential form, in terms of the densitles 6{x, v),
or in integral form in terms of the weights P of the function O(x, v) .
As regards the necessary conditlions for the existence of perlodic trajecto-
ries, these will be formulated only in integral form in the welght terms of
the function ¢(x, y).

The following theorems are valid.

Theorenm 1 . Let the region (o) under consideration contain s
(1 <8 =n) of the total number n of attracting centers, and let the force
of attraction exerted by each center be inversely proporticnal to the (k+1)-th
power of the distance. PFurther, let one of the conditions

a) ks> 2, b) ks =2, e) ks<2 2.1)
be fulfilled in the region (o) .

The sufficient condlition for the absence of perilodic trajectories in the
region (o) is then the stipulation that the sign of the density &(x, y) of
the function &(x, y) remain constant in accordance with (2.1), i.e. that

a) 8 (x, y) <0, b) 8(z, >0 (8 <0), e) Sz >0 (2.2

Theorem 2 . Let one of the conditions (2.1) of Theorem 1 be ful-
filled. The sufficient condition for the absence of periodic trajectories
in the region {o) 1s then one of the following set of rules as regards the
sign of the weight P of the function &(x, y) :

a) P <0, B) P>0(P<0), ¢) P>0 (2.3)

Theorem 3. Let one of the conditions {2.1) of Theorem 1 be ful-
filled. The necessary condition for the existence of periodic trajectories
in the region {¢) is then one of the following set of rules as regards the
sign of the weight P of the function &(x, y) :

a) P> 0, b) P =0, e) PO (2.4)

By virtue of (1.?), the proof of these theorems follows directly from
basic relation {1.%).

It should be noted that the sufficient conditions for the lack of periodic
trajectories (2.2) are more rigid than analogous conditions (2.3), since the
former require that the sign of the density &{x, ¥) be constant at all
points (with the exceptlon of the singular polnts 0,) of the region (g) ,
which is generally not required for the fulfilment of conditions (2.3).

In the case of Newtonlan attracting centers, 1t 1s to be understood that
k =1 1in all the above formulas.
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3. Direct computation of the density &(x, y) = #nac(x, y) of the func-
tion @ (z,9) =In V2(h —V (z,y)) vields
(=12

G (h SV
where the potential V(x, y) 1is determined in accordance with (1.1). Omit-
ting the intervening computations, we write out the values of the quantities

o (r, y) = — (3.1)

involved n
_ F2 2208
S X i
AV == 2, 3
j=1"1 (3.2)
. é * myma, 2
V2LV LAV = L e AL
) kA2, k-2
2 et s +,.]. +
where

o 16,
agj=(r® 1t —2rp;co8 055) 0

(a3; = a1, a53="0) (3.3)

Fig. 1

is the distance between the two attracting centers 0, and 0¢; (Fig.l).
The final expression of the density 6(x, y) is of the form

k2
8@ v =mHroyptA@ v +Y () (3.4)
where n " . _— o aa
— i — 2 ¥
Az, y)_"—”Z T Y(x, y)= 5 E =y Y (3.5)
=13 di=1"1 7

and where an asterisk means that summation is carried out for { # J . Hence,
the sign of the density & depends intimately on the energy constant A ,

since sign (8) = sign (hA + Y) @A, ¥>0) (3.6)

Setting all m,; except one equal to zero, we obtain the case of one attract-
ing center (n = 1) . Let my=m # 0 . Then

m m

V = -—-j‘ N A == ;Fi—“l ’ Y = 0
and the density mkchrE =
8= Tnim+ P S

Here sign (6) = sigh (n) , which coincides with an earlier result [6].

Making use of the terminology adopted in the case of the two~body problem,
we distinguish between three types of motion, the criterion being the value
of the energy constant » : hyperbolic motion (n > 0) , parabolic motion
(n = 0) , and elliptical motion (h < O) . Thus, by (3.5), the density &
for the hyperbolic and parabolic types of motion has a positive sign. By
Théorem 1, this 13 in turn the sufficient condition for the absence of peri~-
odic trajectories for ke < 2 .

In the case of elliptical motion (h < 0) , the density &(x, y) variles in
sign. The sign of &(x, y) changes on passage through the line describéd by
Equation pA (z,y)+ Y (z, 4) = 0.

4, Equation V{x, y) = h of the H1ll curves which bound the region of
possible motions of the point N{x, y) by virtue of {(1.1) is of the form

n m
D L=t (rj=VE—2) +— ;) (4.1)

rj

=1
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The Hill curves enable us to draw some qualitative conclusions about the
character of the motlon. Thus, the density &{x, yz increases without 1limit
in absolute value as 1t approaches the H1ll curves (4.1). By virtue of {3.4)
and (4.1), it assumes infinitely large values on the curves themselves.

Let us consider the case of elliptical motion (n < O) for large absolute
values of the energy constant » . The Hill curve equatlon (4.1) implies
here that cne of the values r,, e.g. I, , must be very small, while the rest
of the r, (4 # ) have finite values since the inequalitles r,+r, = g,
fj # 1) are valid throughout the entire period of motion. Hence, for large

k| Hili's curve consists of n (according to the number of attracting cen-
ters) oval-shaped curves of very small linear dimensions, each of which
includes an attracting center. Elliptical motlion in the case of n attrac-
ting bodies and large |h| involves the phenomenon of "capture"”, and the point
M move§ wlthin one of these ovals (the one in which it lay at the initial
instant).

The oval in which capture occurs can be approximately represented as a
circle of small radius r, given by Expression

r m Y B30, b= 3 ™ 2

j=1 ij

where m, 1s the mass of the attracting center ¢, within the oval. The
asterisk indicates that j # £ 1in the summation.

5. Let us consider the problem of the existence of periodic trajectories
in the neighborhood of some attracting center, let us say 0, , in the pre~
sence of other attracting centers ¢, (j = 2, 3, cees ) .

Placing the origin of our coordinate
system at the point 0, (Fig.2) and
denoting r, by r and m; by m , let
us write out the values of the quantitiles
appearing in Expression (3.%) for the
density é&{x, y) . We have

m Lk
V{x, y)xﬂ—j‘(l#—r Fi(z, v)

m P S
A y) =g L+ " Fa(z y)

. n
m m.a 2
Fig. 2 7 — SR F
g Y =T 24 e T e )
J=

where Fy(x, y) , Fao(x, y) and F,(x, y) are entire functions of x and y.
Limiting ourselves to the leading terms in the indicated expanslons, we
obtain the followilng approximate value for the density:

. mkr{(h 4 by) k-2 o m;
== by = 2 (5.1)

AT {(m + hrk)? - ay ¥

80 that
sign (8) = sign (h + &,)

Hence, by virtue of Theorem 1 and depending on the values of the exponent
k, towlt: (1) x> 2, (2) »x =2, and (3) k¥ < 2 , the sufficient condi-
tions for the absence of periodic trajectories in the neighborhood of the
attracting center ¢, 1s the fulfilment of one of the following condlitions,
respectively:

1) 45, <0, 2) h+ b0, Nht+b20
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If the relations

1) A+ 85>0, 2) k+ b =0, 3) h+ b, <0

are valid with the values of x indicated above, then, by virtue of Theorem
3, the necessary (but unsufficient) conditions for the existence of periodic
trajectories are fulfilled.

The author is grateful to G.N. Duboshin for his attention to the present
study.
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